Nazwa marki: | LHTi |
Numer modelu: | Rurka tytanowa |
MOQ: | 100 kawałków |
Cena £: | negocjowalne |
Warunki płatności: | L/C, D/A, D/P, T/T, Western Union |
Zdolność do zaopatrzenia: | 100-200 ton / ton miesięcznie |
ASTM B338 to standardowa specyfikacja określająca wymagania dotyczące bezszwowych i spawanych rur tytanowych stosowanych w różnych zastosowaniach przemysłowych.Niniejsza specyfikacja ma kluczowe znaczenie dla zapewnienia spełnienia przez rurki tytanowe określonych właściwości mechanicznychUnikalne właściwości tytanu, takie jak jego doskonała odporność na korozję i wysoki stosunek wytrzymałości do masy,W ten sposób będzie idealnym wyborem dla przemysłu lotniczego i kosmicznego.Przystosowanie się do normy ASTM B338 pozwala producentom zagwarantować, że ich rurki tytanowe działają niezawodnie w trudnych warunkach.
Specyfikacja ASTM B338 określa kilka krytycznych właściwości rur tytanowych, w tym wytrzymałość na rozciąganie, wytrzymałość wydajności i wydłużenie.W przypadku wyrobów objętych pozycją 8411:Przykładowo, komercyjnie czysty tytan (klasa 1, klasa 2 itp.) zapewnia wyjątkową odporność na korozję,co sprawia, że nadaje się do agresywnych warunkówPonadto stopy tytanu, takie jak Ti-6Al-4V, zapewniają zwiększoną wytrzymałość i odporność na zmęczenie, co jeszcze bardziej poszerza zakres zastosowań rur tytanowych ASTM B338.
Inną istotną właściwością rur tytanowych ASTM B338 jest ich lekkość.Charakterystyka ta jest szczególnie korzystna w zastosowaniach, w których zmniejszenie masy ciała jest kluczowePołączenie lekkiej masy i wysokiej wytrzymałości zapewnia bardziej efektywne projektowanie konstrukcji,prowadzące do lepszej efektywności paliwa i ogólnej wydajności systemu.
Jedną z głównych zalet bezszwowych rur tytanowych jest ich wyjątkowa odporność na korozję.co czyni go idealnym do stosowania w przetwarzaniu chemicznym i zastosowaniach morskichW wymiennikach ciepła, gdzie płyn często zawiera agresywne substancje chemiczne lub sole, trwałość tytanu zapewnia długowieczność i niezawodność, minimalizując ryzyko wycieków i awarii sprzętu.Ta odporność na korozję znacznie przedłuża żywotność wymienników ciepła, zmniejszając koszty utrzymania i przestojów związanych z naprawami lub wymianami.
Inną kluczową zaletą bezszwowych rur tytanowych jest ich lekkość.co przekłada się na łatwiejszą obsługę i instalacjęTa redukcja masy może być szczególnie korzystna w systemach wymienników ciepła na dużą skalę, gdzie ciężkie komponenty mogą komplikować logistykę i zwiększać wymagania w zakresie wsparcia konstrukcyjnego.Wykorzystując bezszwowe rury z tytanu, inżynierowie mogą zaprojektować bardziej wydajne i sprawne systemy przy zachowaniu integralności strukturalnej.
Właściwości mechaniczne tytanu odgrywają również kluczową rolę w jego zastosowaniu w wymiennikach ciepła.o pojemności nieprzekraczającej 10 WTe właściwości są niezbędne w wymiennikach ciepła pracujących w warunkach wysokiego ciśnienia, zapewniając, że rury mogą utrzymać swoją integralność i wydajność w czasie.Połączenie tych mechanicznych zalet zapewnia, że bezszwowe rury tytanowe mogą skutecznie radzić sobie z wymagającymi warunkami różnych zastosowań przemysłowych.
Pozycja | Standardowy | Materiał | Rozmiar ((mm) |
Wymiennik ciepła I kondensator |
ASTMB338,ASTMB337, ASTMB861 |
Poziom 1,2,3 | OD ((5-114) X ((0.3 ̇10) XL1200mmMax |
Rury odporne na korozję | ASTMB338 | Klasa 7, Klasa 12 | OD ((5-114) X ((0.5 ∼4.5) XDługość 12000 mmMax |
Rower/Stołek inwalidzki/Rura wydechowa/Rury |
ASTMB338 |
Gr9/Ti3Al2v5 | OD ((38.1?? 44.5) X ((0.9-3.15) X ((L1000?? 2000MM) |
Rury wydechowe samochodów i motocykli | ASTMB337/338 | Gr1, Gr2, Gr9 | OD ((38.1?? 88.9) X1.2X ((L1000?? 2000mm) |
Przemysł morski | ASTM/AMS | Gr2,Gr5,Gr7,Gr12 |
OD ((23.1-210) X ((W0.5-6.0) X ((L1000-6000mm)
|
Tytan klasy 9, znany również jako Ti-3Al-2.5V, jest stopem alfa-beta, który łączy w sobie korzystne właściwości zarówno fazy alfa, jak i beta tytanu.Jest znany ze swojego doskonałego stosunku siły do wagi, odporność na korozję i dobrą spawalność, dzięki czemu nadaje się do wielu zastosowań, zwłaszcza w przemyśle lotniczym, morskim, motoryzacyjnym i przetwarzaniu chemicznym.Poniżej przedstawiono kluczowe właściwości rur tytanowych klasy 9:
Produkcja rur bezszwowych z tytanu obejmuje zaawansowane techniki produkcyjne zapewniające wysoką jakość i precyzję.które następnie są podgrzewane i przebiane, tworząc pustą ruręNastępnym krokiem jest wydłużenie rury za pomocą metod piercing lub wytłaczania, co daje bezszwową rurę o stałej grubości ściany.Ten proces wytwarzania nie tylko poprawia właściwości mechaniczne materiału, ale także eliminuje słabości związane ze stopieniami spawanymi, w wyniku czego powstaje produkt zarówno niezawodny, jak i trwały.
Techniki obróbki na gorąco są powszechnie stosowane podczas procesu produkcyjnego w celu zwiększenia właściwości mechanicznych tytanu.producenci mogą poprawić mikrostrukturę tytanuPo utworzeniu rury poddawane są serii obróbek cieplnych w celu dalszej optymalizacji ich właściwości.Procesy te mają kluczowe znaczenie dla zapewnienia, że produkt końcowy spełnia rygorystyczne standardy i specyfikacje przemysłu.
Kontrola jakości ma zasadnicze znaczenie w produkcji bezszwowych rur tytanowych, ponieważ integralność produktu końcowego jest niezbędna do bezpiecznej pracy wymienników ciepła.Producenci przeprowadzają rygorystyczne badania, w tym metody badań nieniszczących (NDT), takie jak kontrole ultradźwiękowe i wirusowe, w celu wykrycia ewentualnych wad.Zobowiązanie do zapewnienia jakości zapewnia, że bezszwodowe rury tytanowe mogą wytrzymać rygorystyczne zastosowania przemysłowe i zapewniać optymalne osiągi.
ASTM B338 to standardowa specyfikacja obejmująca bezszwowe i spawane rury i rury tytanowe do różnych zastosowań, zwłaszcza w przemyśle lotniczym, chemicznym i morskim.Oto zwięzłe wprowadzenie do ASTM B338 rur tytanowych:
Zakres:
Wartości materiału:
Zastosowanie:
Procesy produkcyjne:
Standardy i badania:
Specyfikacje:
W specyfikacji ASTM B338 podkreślono kilka krytycznych właściwości rur tytanowych, które przyczyniają się do ich wydajności w różnych zastosowaniach.
Połączenie wysokiej wytrzymałości na rozciąganie i wydajność, doskonała odporność na korozję, lekka natura,i trwałość sprawiają, że ASTM B338 rurki tytanowe są bardzo uniwersalne i odpowiednie do szerokiego zakresu wymagających zastosowańWłaściwości te zapewniają wydajny projekt i wydajność, zwłaszcza w środowiskach, w których tradycyjne materiały mogą ulec awarii.
Rury tytanowe ASTM B338 znajdują szerokie zastosowania w wielu gałęziach przemysłu ze względu na swoje unikalne właściwości.i elementów strukturalnych, gdzie najważniejsze są oszczędności masy i odporność na korozję.Zdolność tytanu do wytrzymania ekstremalnych temperatur i ciśnienia czyni go preferowanym materiałem w tych środowiskach o wysokiej wydajnościPonadto przemysł lotniczy bardzo ceni niereaktywność tytanu, która jest niezbędna dla elementów, które wchodzą w kontakt z różnymi płynami.
W przemyśle chemicznym rurki tytanowe ASTM B338 są wykorzystywane w wymiennikach ciepła, reaktorach i systemach rurociągowych.takie jak kwasy i chlorydy, minimalizuje koszty utrzymania i zwiększa żywotność.w ten sposób zapewniając bezpieczeństwo i niezawodność w operacjachWykorzystanie tytanu w tych warunkach nie tylko poprawia wydajność, ale również przyczynia się do zrównoważonych praktyk poprzez zmniejszenie potrzeby częstej wymiany.
Do zastosowań morskich wykorzystywane są również w znacznym stopniu rurki tytanowe ASTM B338.Biorąc pod uwagę trudne warunki w środowisku morskim, takie jak narażenie na działanie słonej wody i wysokie ciśnienie, odporność tytanu na korozję okazuje się bezcenna.Rury te są często stosowane w systemach chłodzenia wody morskiej, elektrowniach odsalania oraz na platformie naftowej i gazowej.Wykorzystanie tytanu w tych zastosowaniach pomaga złagodzić problemy związane z korozją i skażeniem, co prowadzi do bardziej wydajnych i trwałych systemów.
W miarę dalszego rozwoju przemysłu oczekuje się wzrostu zapotrzebowania na rury bezszwowe z tytanu w wymiennikach ciepła.Działania badawczo-rozwojowe koncentrują się na poprawie właściwości stopów tytanu, umożliwiając im jeszcze lepsze działanie w ekstremalnych warunkach.otwierają również nowe możliwości produkcji złożonych geometrii i dostosowanych projektów spełniających specyficzne wymagania aplikacjiPostępy te prawdopodobnie doprowadzą do zwiększonego wykorzystania bezszwowych rur tytanowych w różnych gałęziach przemysłu.
Zrównoważony rozwój staje się ważnym czynnikiem decydującym o wyborze materiałów, a możliwość recyklingu tytanu przyczynia się do jego atrakcyjności w nowoczesnych zastosowaniach.Podczas gdy przemysł stara się zmniejszyć swój ślad środowiskowy, wykorzystanie trwałych i poddawanych recyklingowi materiałów, takich jak tytan, stanie się coraz ważniejsze.zapewnienie, że pozostaje trwałym rozwiązaniem dla wymienników ciepła i innych krytycznych zastosowań.
Digitalizacja i inteligentne technologie mają również zrewolucjonizować sposób projektowania i monitorowania wymienników ciepła.Zintegrowanie czujników i systemów monitorowania w czasie rzeczywistym w projektach rur bezszwowych z tytanu może zapewnić cenne informacje na temat wydajności i stanu w czasieTakie postępy nie tylko zwiększą wydajność operacyjną, ale także umożliwią przewidywalne strategie konserwacji, co ostatecznie prowadzi do zmniejszenia kosztów operacyjnych i zwiększenia niezawodności.
Podsumowując, rury tytanowe klasy 7 stanowią istotny element w wielu zastosowaniach przemysłowych ze względu na ich wyjątkowe właściwości i zalety.charakter lekki, a ich wysoka wytrzymałość sprawia, że nadają się do wymagających warunków w przemyśle lotniczym, przetwórstwie chemicznym i przemysłu morskiego.Zaawansowane procesy produkcyjne i rygorystyczne kontrole jakości zapewniają, że rury te spełniają najwyższe standardy wydajności i niezawodnościPonieważ przemysł nadal poszukuje innowacyjnych rozwiązań, rury tytanowe klasy 7 pozostaną w czołówce, oferując trwałość i wydajność zgodną z nowoczesnymi potrzebami operacyjnymi.Wykorzystanie tych zaawansowanych materiałów nie tylko zwiększy wydajność, ale również przyczyni się do bardziej zrównoważonej przyszłości inżynierii i produkcji.